Table 8 Soil Sample Analytical Data Summary Semi-Volatile Organic Compounds EPA Method 8270

Gladsky and Anglers Club Sites

Seminant	Client Sample ID:	NYSDEC (1)	NYSDEC (1) AC-GI-001			GI-002		GL-GI-001			GL-GI-002		
Control Cont	Sample Depth:			4-6'					8-10'		4-6'		
Contemplate	Laboratory ID:	Restricted-Residential	480-55280-21	480-55280-22	480-55280-23	480-55280-24		480-54120-6	480-54120-7	480-54120-8		480-54120-10	
Section Sect		Use	2/25/2014	2/25/2014	2/25/2014	2/25/2014	1/30/2014	1/30/2014	1/30/2014	1/30/2014	1/30/2014	1/30/2014	
See Selectionerproces 16. 19.													
Secure complement 60													
Secure content													
Secondation													
Secure commons	,,												
Section continues													
Extensional Model 13 U 52 U 12 U 120													
Semigraphysione No. 1.5													
Section of the content of the cont	2-Chlorophenol	NS	9.6 U	9.3 U	93 U	9.4 U	93 U	9.0 U	9.7 U	12 U	46 U	9.6 U	
Materian 60	2-Methylnaphthalene	NS	2.3 U	2.2 U	22 U	2.2 U	250 J	2.1 U	2.3 U	2.8 U	11 U	2.3 U	
Secondary Seco	2-Methylphenol	NS	5.8 U	5.6 U	56 U	5.7 U	56 U	5.4 U	5.9 U	7.2 U	28 U	5.8 U	
Secondamente Seco													
Second No	·												
Secure consisted 1980,000 1981													
Exemplement No. 16													
Echeson-embryphemel NS 97 U 75 U 75 U 76 U 76 U 75 U 76 U 75 U 78 U 96 U 77 U 78 U 96 U 78 U 7													
Echecoparime													
Extremely persony others SS													
Machingsterment NS													
Memorphismon													
Milliographerion No	,,												
Manager Mana	4-Nitrophenol	NS	46 U	44 U	440 U	45 U	440 U	43 U	46 U	56 U	220 U	46 U	
No. 1.00 1	Acenaphthene	100,000 ^a	22 J	2.2 U	26 J	2.2 U	470 J	2.1 U	2.2 U	2.7 U	560 J	2.2 U	
Manuscole	Acenaphthylene ^f	100,000 ^a	12 J	1.5 U	80 J	1.5 U	15 U	1.4 U	1.6 U	1.9 U	7.4 U	1.5 U	
No.	. ,			9.4 U	94 U				9.8 U				
Parametery 18.5													
Semologian presence 1,000' 220													
Semololpyrene													
Semologing personal college 1,000 200 3.6 U 500 J 3.6 U 150 J 3.6 U 3.0 J 3.6 U 3.0 J 2.2 U 3.6 U 3.0 J 3.7 U 120 J 5.60 J 3.7 U 3.6 U 3.0 U 3.6 U													
Participation													
September Sept													
Sphenyl													
BQC-chiorosiopropylether NS													
EQC-chloroethoplymethane NS 10 U	. ,				190 U						94 U		
20/2-Ethylmexylphthalate		NS	10 U	10 U	100 U	10 U	99 U	9.6 U	10 U	13 U	49 U	10 U	
Rufy benzy phthalate	Bis(2-chloroethyl)ether	NS	16 U	16 U	160 U	16 U	160 U	15 U	16 U	20 U	78 U	16 U	
Caprolactum NS 81 U 79 U 790 U 80 U 790 U 76 U 83 U 100 U 390 U 82 Carbazole NS 38 J 2.1 U 21 U 21 U 21 U 2.1 U 240 J 2.0 U 2.2 U 2.7 U 10 U 2.2 U 2.2 U 2.2 U 2.7 U 10 U 2.2 U 2.2 U 2.2 U 2.7 U 10 U 2.2 U 2.2 U 2.2 U 2.2 U 2.2 U 2.7 U 100 J 2.2 U 2.7 U 100 J 2.2 U 2.2	Bis(2-Ethylhexyl)phthalate	NS	61 U	59 U	590 U	60 U	590 UJ	57 U	61 U	75 U	290 U	61 U	
Carbazole NS 38 J 2.1 U 21 U 2.1 U 2.1 U 2.40 J 2.0 U 2.2 U 2.7 U 10 U 2.2 Chysene' 3,900 280 28 J 480 J 1.9 U 1,100 J 54 J 1.9 U 87 J 520 J 1.9 Dibenzo(a),hantrvacene' 330" 2.2 U 2.2 U 2.2 U 2.2 U 2.1 U 2.1 U 2.2 U 2.2 U 2.7 U 100 J 2.2 Dibenzo(avan' 59,000 2 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.8 U 2.0 U 2.4 U 110 J 2.0 Diethylphhalate NS 5.7 U 5.5 U 5.8 U 7.0 U 2.7 U 2.7 U 5.7 Dimethylphhalate NS 6.5 U 6.3 U 6.3 U 6.4 U 6.4 U 6.30 U 6.1 U 6.0 U 8.0 U 310 U 6.5 Di-n-octylphhalate NS 6.5 U 6.3 U 6.3 U 6.4 U 6.3 U 6.4 U 6.3 U 6.4 U 6.4 U 6.3 U 6.5 U 6.1 U 6.5 U 5.4 U 2.2 U 5.4 U 1.10 U 5.0 U 6.1 U 2.2 U 2.0 U 2.4 U 1.10 U 6.5 Di-n-octylphhalate NS 6.5 U 6.3 U 6.3 U 6.4 U 6.3 U 6.4 U 6.3 U 6.4 U 6.3 U 6.1 U 6.6 U 8.0 U 310 U 6.5 Di-n-octylphhalate NS 6.5 U 6.3 U 6.4 U 6.3 U 6.4 U 6.3 U 6.4 U 6.3 U 6.4 U 6.5 U 6.4 U 6.5 U 6.5 U 6.5 U 6.5 U 6.1 U 6.6 U 8.0 U 310 U 6.5 Di-n-octylphhalate NS 6.5 U 6.3 U 6.4 U 6.4 U 6.3 U 6.4 U 6.4 U 6.5 U 6.5 U 6.4 U 6.5	Butyl benzyl phthalate	NS	51 U	49 U	490 U	50 U	490 UJ	47 U	51 U	63 U	240 U	51 U	
Chrysene' 3,900 280 28 J 480 J 1,9 U 1,100 J 54 J 1,9 U 87 J 520 J 1,9 Disenzo(a,h)anthracene' 3330" 2,2 U 2,4 U 110 J 2,0 Disenzo(a,h)anthracene' 59,000 2 U 1,9 U 1,9 U 1,9 U 1,9 U 1,9 U 1,8 U 2,0 U 2,4 U 110 J 2,0 Disenzo(a,h)anthracene' NS 5.7 U 5.5	Caprolactum						790 U						
Dibenzo(a, h)anthracene' 330° 22 U 22 U 22 U 22 U 21 U 21 U 21 U 21													
Diehryphthalate													
Diethylphthalate													
Dimothylphthalate													
Di-n-butyphthalate													
Din-octylphthalate													
Fluorente 100,000° 460 25 3 670 3 2.7 U 2.500 85 3 2.8 U 140 3 1,500 2.7 Fluorene 100,000° 4.3 U 4.2 U 42 U 4.3 U 350 J 4.1 U 4.4 U 5.4 U 310 J 4.4 Hexachlorobtardiene NS 9.6 U 9.4 U 94 U 9.5 U 90 U 8.8 U 9.5 U 12 U 45 U 9.4 Hexachlorocyclopentadiene NS 9.6 U 9.4 U 94 U 9.5 U 93 U 90 U 8.8 U 70 U 270 U 57 Hexachlorocyclopentadiene NS 15 U 14 U 140 U 14 U 140 U 14 U 15 U 18 U 70 U 15 Hexachlorocyclopentadiene NS 15 U 14 U 140 U 14 U 140 U 14 U 15 U 18 U 70 U 270 U 57 Hexachlorocyclopentadiene NS 9.4 U 9.2 U 9.2 U 9.3 U 9.0 U 8.8 U 9.5 U 9.5 U 9.5 U 9.5 Hoxachlorocyclopentadiene NS 15 U 14 U 140 U 14 U 140 U 14 U 15 U 18 U 70 U 15 Hexachlorocyclopentadiene NS 9.4 U 9.2 U 9.2 U 9.3 U 9.1 U 8.8 U 9.5 U 12 U 45 U 9.5 Hoxachlorocyclopentadiene NS 9.4 U 9.2 U 9.2 U 9.3 U 9.1 U 8.8 U 9.5 U 12 U 45 U 9.5 Hoxachlorocyclopentadiene NS 9.4 U 9.2 U 9.2 U 9.3 U 9.1 U 8.8 U 9.5 U 12 U 45 U 9.5 Hoxachlorocyclopentadiene NS 9.4 U 9.2 U 9.2 U 9.3 U 9.1 U 8.8 U 9.5 U 12 U 45 U 9.5 Hoxachlorocyclopentadiene NS 8.3 U 8.1 U 8.2 U 8.8 U 9.5 U 12 U 45 U 9.5 Hoxachlorocyclopentadiene NS 8.3 U 8.1 U 8.1 U 8.8 U 9.5 U 12 U 45 U 9.5 Hoxachlorocyclopentadiene NS 8.3 U 8.1 U 8.1 U 8.8 U 9.5 U 12 U 45 U 9.5 Hoxachlorocyclopentadiene NS 8.3 U 8.1 U 8.1 U 8.8 U 9.5 U 8.8 U 9.5 U 4.5 U 4.5													
Puorene 100,000° 4.3 U 4.2 U 4.2 U 4.3 U 350 J 4.1 U 4.4 U 5.4 U 310 J 4.4 Haxachiorobenzene 1,200 9.3 U 9.1 U 91 U 9.2 U 90 U 8.8 U 9.5 U 12 U 45 U 9.4 Haxachiorobenzene NS 9.6 U 9.4 U 9.5 U 9.5 U 93 U 9.0 U 9.8 U 12 U 46 U 9.7 Haxachiorobenzene NS 57 U 55 U 550													
Hexachlorocyclopentadiene	Fluorene	100,000 ^a											
Hexachlorocyclopentadiene	Hexachlorobenzene	1,200	9.3 U	9.1 U	91 U	9.2 U	90 U	8.8 U	9.5 U	12 U	45 U	9.4 U	
Hexachloroeithane	Hexachlorobutadiene	NS	9.6 U	9.4 U	94 U	9.5 U	93 U	9.0 U	9.8 U	12 U	46 U	9.7 U	
Indeno(1,2,3-cd)Pytene	, ,												
sophorone NS 9.4 U 9.2 U 9.2 U 9.3 U 91 U 8.8 U 9.5 U 12 U 45 U 9.5 Naphthalene' 100,000° 3.1 U 3 U 3.1 U 3.1 U 3.0 U 2.9 U 3.2 U 3.9 U 15 U 3.1 U 8.2 U 8.1 U 8.2 U 8.1 U 8.2 U 8.1 U 8.2 U 8.5 U 10 U 4.0 U 8.4 NItroscolPhenydamine(NDPA)/DPA NS 10 U 10 U 10 U 10 U 10 U 99 U 9.6 U 10 U 10 U 10 U 10 U 10 U 99 U 9.6 U 10 U 10 U	Hexachloroethane	NS	15 U	14 U	140 U	14 U	140 U	14 U	15 U	18 U	70 U	15 U	
Naphthalane' 100,000° 3.1 U 3 U 31 U 3.1 U 30 U 2.9 U 3.2 U 3.9 U 15 U 3.1 NItobenzene NS 8.3 U 8.1 U 81 U 8.2 U 81 U 7.8 U 8.5 U 10 U 40 U 8.4 NItobenzene NS 15 U 15 U 15 U 150 U 15 U 15 U 15 U 15	Indeno(1,2,3-cd)Pyrene'	500'		5.1 U				22 J				5.2 U	
Nitrosodi-n-propylamine NS 15 U 15 U 15 U 15 U 16 U 17 U 19													
h-Nitrosodi-n-propylamine NS 15 U 15 U 150 U 15 U 140 U 14 U 15 U 18 U 71 U 15 Nitrosodi-n-propylamine NDPA/DPA NS 10 U 10 U 10 U 10 U 10 U 99 U 9.6 U 10 U 13 U 49 U 10 Pentachiorophenol 6.700 65 U 63 U 630 U 64 U 620 U 61 U 65 U 80 U 310 U 65 Penenalthrene' 100.000° 220 13 J 350 J 3.9 U 2.100 32 J 4.0 U 55 J 1,000 4.0 Phenol 100.000° 20 U 19 U 190 U 20 U 190 U 19 U 19 U 20 U 25 U 95 U 20 Pyrene' 100.000° 500 39 J 870 J 1.2 U 1,000 74 J 1.2 U 130 J 1,100 1.2													
NitrosoDiPhenylAmine(NDPA)/DPA NS 10 U 10 U 10 U 10 U 10 U 99 U 9.6 U 10 U 13 U 49 U 10 Pentachlorophenol 6,700 65 U 63 U 630 U 64 U 620 U 61 U 65 U 80 U 310 U 65 Penenalthreno' 100,000° 220 13 J 350 J 3.9 U 2,100 32 J 4.0 U 55 J 1,000 4.0 Phenol 100,000° 20 U 19 U 190 U 20 U 190 U 19 U 20 U 25 U 95 U 20 Pyrene' 100,000° 500 39 J 870 J 1.2 U 1,900 74 J 1.2 U 130 J 1,100 1.2													
Pentachiorophenol 6,700 65 U 63 U 630 U 64 U 620 U 61 U 65 U 80 U 310 U 65 Phenanthrene' 100,000° 220 13 J 350 J 3,9 U 2,100 32 J 4,0 U 55 J 1,000 4,0 Phenol 100,000° 20 U 19 U 190 U 20 U 190 U 19 U 20 U 25 U 95 U 20 Pyrene' 100,000° 500 39 J 870 J 1,2 U 1,900 74 J 1,2 U 130 J 1,100 1.2													
Phenanthrene' 100.000° 220 13 J 350 J 3.9 U 2.100 32 J 4.0 U 55 J 1.000 4.0 Phenol 100.000° 20 U 19 U 190 U 20 U 190 U 19 U 20 U 25 U 95 U 20 Pyrene' 100.000° 500 39 J 870 J 1.2 U 1,900 74 J 1.2 U 130 J 1,100 1.2	· ·												
Phenol 100,000° 20 U 19 U 190 U 20 U 190 U 190 U 20 U 25 U 25 U 95 U 20 Pyrene' 100,000° 500 39 J 870 J 1.2 U 1,900 74 J 1.2 U 130 J 1,100 1.2													
Pyrene' 100,000° 500 39 J 870 J 1.2 U 1,900 74 J 1.2 U 130 J 1,100 1.2													
		100,000°											
	Total SVOCs		2,602	130	5,576	ND	13,660	508	ND	879	7,750	ND	

Notes

- (1) NYSDEC 6 NYCRR Environmental Remediation Programs Part 375 Restriced Use of Soil Cleanup Objective Table 375-6.8b 12/06
- a The SCOs for residential, restricted-residential and ecological resources use were capped at a maximum value of 100 ppm. See TSD section 9.3.
- c The SCOs for industrial use and protection of groundwater were capped at a maximum value of 1,000 ppm. See TSD section 9.3.
- e For constituents where the calculated SCO was lower than the contract required quantitation limit (CROL), the CROL is used as the SCO value.

 1 For constituents where the calculated SCO was lower than the rural soil background concentration, as determined by the department and department of health rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.
- NS No Standard
- B Compound was found in the blank and sample.
- J Data are flagged (J) when a QC analysis falls outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fall. The "J" data may be biased high or low or the direction of the bias may be indeterminable.
- JN The analysis indicated the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected ® on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.
- $\label{thm:contamination} \textit{U-The analyte was analyzed for, but due to blank contamination was flagged as non-detect (U). The result is usable as nondetect.}$
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a OC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fall. The "UJ" data may be blassed low.

Table 9 Soil Sample Analytical Data Summary Total Metals EPA Method 6010

Gladsky and Anglers CLub Sites

Client Sample ID:	NYSDEC (1)	AC-0	GI-001	AC-GI-002					GL-GI-001		GL-GI-002								
Sample Depth:	Soil Cleanup Objectives	0-2'	4-6'	0-2'		4-6'		0-2'		4-6'		8-10'		0-2'		4-6'		8-10'	
Laboratory ID:	Restricted-Residential	480-55280-21	480-55280-22	480-55280-23	48	0-55280-	24	480-54120-5		480-54120-6		480-54120-7		480-54120-		480-54120		480-54120	-10
Sampling Date:	Use	2/25/2014	2/25/2014	2/25/2014		2/25/2014		1/30/2014		1/30/2014		1/30/2014		1/30/2014		1/30/2014		1/30/2014	
Total Metals (mg/kg)																			
Aluminum, Total	NS	4,530 J	6,920 J	6,410	J	7380	J	7,150	J	2,800	J	3,020	J	2,800	J	8,940	J	2,850	J
Antimony, Total	NS	1.4 J	0.46 U	1.6	J	0.43	U	0.44	С	0.40	U	0.46	U	0.54	\Box	0.44	U	0.48	U
Arsenic, Total	24*	9.7 J	1.2 J	10.5	J	3.2	J	4.1	J	2.3	J	0.98	J	1.5	J	4.3	J	1.2	J
Barium, Total	400	54.9 J	39 J	42.1	J	29.5	J	73.6	J	14.5	J	13.7	J	16.7	_	37.2	J	9.2	J
Beryllium, Total	72	0.2 J	0.28 J	0.33	J	0.39	J	0.16	J	0.088	J	0.14	J	0.067	J	0.79	J	0.18	J
Cadmium, Total	4.3	0.74 J	0.052 J	0.75	J	0.049	J	0.31	J	0.051	J	0.034	U	0.040	U	0.11	J	0.036	U
Calcium, Total	NS	10,400	1,020	4,430		730		28,300	BJ	872	BJ	346	BJ	986	BJ	1,010	BJ	327	BJ
Chromium, Total ^e	180	12.8	17.6 B	15.5	В	10	В	17.2		6.0		5.6		4.6		13.3		5.2	
Cobalt, Total	NS	4.6	4.7	6.9		9.2		7.9		1.9	J	1.2	J	1.7	J	6.1		2.1	J
Copper, Total	270	46.8 J	14.4	52.5		16.3		34.0		8.3		3.1	J	5.4	J	24.3		3.2	J
Iron, Total	NS	7,600 B	8,010 B	12,000	В	9640	В	12,500	BJ	5,050	BJ	4,730	BJ	4,570	BJ	10,100	BJ	6,460	BJ
Lead, Total	400	180	6.1 J	88.88	J	8.5	J	110		13.9		3.0	J	10.6		64.5		3.2	J
Magnesium, Total	NS	5,550 J	1,630	3,490		1700		6,850	J	893	J	746	J	708	J	1,260	J	619	J
Manganese, Total	2,000 ^f	162 BJ	48.5 B	190	В	141	В	184	J	64.2	J	36.1	J	83.6	J	64.7	J	54.2	J
Nickel, Total	310	7.2 J	10.8 J	9.2	J	7.2	J	15.0	J	4.8	J	3.2	J	3.6	J	11.5	J	3.8	J
Potassium, Total	NS	431 J	651	646		892		1,670		282		401		336		854		307	
Selenium, Total	180	1.1 J	0.46 U	0.5	J	0.43	U	0.44	U	0.40	U	0.46	U	0.54	U	0.44	U	0.48	U
Silver, Total	180	0.7 J	0.23 U	0.63	J	0.21	U	0.22	U	0.20	U	0.23	U	0.27	U	0.31	J	0.24	U
Sodium, Total	NS	78.8 J	295 J	62.3	J	82	J	334	J	38.8	J	51.5	J	42.8	J	191	J	89.6	J
Thallium, Total	NS	0.33 U	0.35 U	0.32	U	0.32	U	0.33	U	0.30	U	0.34	U	0.40	U	0.33	U	0.36	U
Vanadium, Total	NS	15.3	12.8	14.7		21.1		25.2		7.4		7.6		7.2		20.2		6.9	
Zinc, Total	10,000 ^d	104 B	32.8 BJ	107 E	3J	29.9	BJ	89.2	BJ	23.8	BJ	11.4	U	21.0	BJ	73.3	BJ	11.9	U
Mercury, Total	0.81 ^J	0.38	0.0088 U	0.12		0.014	J	0.081		0.018	J	0.0090	U	0.015	J	0.060		0.0086	U

Notes:

- (1) NYSDEC 6 NYCRR Environmental Remediation Programs Part 375 Restriced Use of Soil Cleanup Objective Table 375-6.8b 12/06
- * Site Specific Cleanup Objective
- d The SCOs for metals were capped at a maximum value of 10,000 ppm. See TSD section 9.3.
- f For constituents where the calculated SCO was lower than the rural soil background concentration, as determined by the department and department of health rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.
- $j This \ SCO \ is \ the \ lower \ of \ the \ values \ for \ mercury \ (elemental) \ or \ mercury \ (inorganic \ salts). \ See \ TSD \ Table \ 5.6-1.$
- NS No Standard
- B Compound was found in the blank and sample.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The "J" data may be biased high or low or the direction of the bias may be indeterminable.
- JN The analysis indicated the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected ® on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.
- U The analyte was analyzed for, but due to blank contamination was flagged as non-detect (U). The result is usable as nondetect.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The "UJ" data may be biased low.

Highlighted text denotes concentrations exceeding NYSDEC Restricted-Residential Use SCO

Table 10 Soil Sample Analytical Data Summary Pesticides EPA Method 8081

Gladsky and Anglers Club Sites

Client Sample ID:	NYSDEC (1)	AC-GI-001				AC-GI-002				GL-GI-00			GL-GI-002							
Sample Depth:	Soil Cleanup Objectives	0-2'		4-6'		0-2'	0-2' 4-6'			0-2'		4-6'		8-10'		0-2'		4-6'		8-10'
Laboratory ID:	Restricted-Residential	480-55280)-21	480-55280)-22	480-55280	480-55280-23		480-55280-24		480-54120-5		480-54120-6		0-7	480-54120-8		480-54120-9		480-54120-10
Sampling Date:	Use	2/25/20	14	2/25/2014		2/25/2014		2/25/201	4	1/30/20	114	1/30/201	4	1/30/20	14	1/30/2014		1/30/2014		1/30/2014
Organochlorine Pesticides (
4,4'-DDD	13,000	1.8	U	0.35	U	7.1	U	0.68	J	18	U	3.4	U	0.36	U	0.55	J	6.8	U	0.37 U
4,4'-DDE	8,900	2.7	J	0.81	J	12	J	1	J	26	JB	2.7	U	0.28	U	2.3 l	IJ	5.3	U	0.28 U
4,4'-DDT	7,900	41		0.79	J	19	J	1.3	J	9.2	U	1.8	U	1.8	U	2.3 l	IJ	3.6	U	1.9 U
Aldrin	97	2.3	U	0.45	UJ	9	U	0.45	U	22	U	4.3	U	0.45	U	0.58 l	IJ	8.7	U	0.46 U
Alpha-BHC	480	1.7	U	0.45	J	6.6	U	0.33	U	16	U	3.2	U	0.33	U	0.42 l	IJ	6.3	U	0.34 U
Alpha-Chlordane	4,200	4.6	U	0.91	UJ	18	U	0.91	U	45	U	8.8	U	0.92	U	6.2		18	U	0.94 U
Beta-BHC	360	1	U	0.2	UJ	4	U	0.2	U	9.8	U	1.9	U	1.8	U	0.25 l	IJ	3.8	U	0.70 J
Delta-BHC ⁹	100,000 ^a	1.2	\subset	0.24	UJ	4.8	U	0.48	J	14	JB	18	U	0.24	U	2.3 l	IJ	35	\subset	0.25 U
Dieldrin	200	2.2	\subset	0.44	UJ	8.8	U	0.44	U	22	U	4.2	U	0.44	U	2.4		8.4	\subset	0.45 U
Endosulfan I ^{d,f}	24,000 ⁱ	1.2	\subset	0.23	UJ	4.6	U	0.23	U	11	U	2.2	U	0.23	U	0.29 l	IJ	4.4	\subset	0.24 U
Endosulfan II ^{d,f}	24,000 ⁱ	1.7	\subset	0.33	U	6.6	U	0.33	U	16	U	3.2	U	0.33	U	0.42 l	IJ	6.3	\subset	0.34 U
Endosulfan sulfate ^{d,f}	24,000 ⁱ	1.7	\subset	0.34	U	6.8	U	0.34	U	17	U	3.3	U	0.34	U	0.44 l	IJ	6.6	\subset	0.35 U
Endrin	11,000	1.3	\subset	0.25	U	5	U	0.25	U	12	U	2.4	U	0.25	U	0.32 l	IJ	4.9	\subset	0.26 U
Endrin aldehyde	NS	2.4	\subset	0.46	U	9.4	U	0.47	U	23	U	4.5	U	0.47	U	0.60 l	IJ	9.0	\subset	0.48 U
Endrin ketone	NS	2.3	С	0.45	U	9	U	0.45	U	22	U	4.3	U	0.45	U	0.58 l	IJ	8.7	\subset	0.46 U
Gamma-BHC (Lindane)	1,300	1.1	U	0.64	J	4.5	U	0.43	J	11	U	2.2	U	0.23	U	0.29 l	IJ	4.4	U	0.23 U
Gamma-Chlordane	NS	3	U	0.64	J	12	U	0.58	U	37	J	5.6	U	0.59	U	4.0		11	U	0.60 U
Heptachlor	2,100	1.5	\Box	0.28	UJ	5.7	U	0.29	U	14	U	2.8	U	0.29	U	0.37 l	IJ	5.5	\subset	0.29 U
Heptachlor epoxide	NS	2.4	U	0.47	UJ	9.4	U	0.47	U	23	U	4.6	U	0.48	U	0.60 l	IJ	9.1	U	0.49 U
Methoxychlor	NS	1.3	U	0.25	U	5	U	0.25	U	12	U	2.4	U	0.25	U	0.32 l	IJ	4.9	U	0.26 U
Toxaphene	NS	54	U	11	U	210	U	11	U	530	U	100	U	11	UJ	14 l	IJ	200	U	11 U

Notes:

- (1) NYSDEC 6 NYCRR Environmental Remediation Programs Part 375 Restriced Use of Soil Cleanup Objective Table 375-6.8b 12/06
- a The SCOs for residential, restricted-residential and ecological resources use were capped at a maximum value of 100 ppm. See TSD section 9.3.
- c The SCOs for industrial use and protection of groundwater were capped at a maximum value of 1,000 ppm. See TSD section 9.3.
- i This SCO is for the sum of Endosulfan I, endosulfan II, and endosulfan sulfate.
- NS No Standard
- B Compound was found in the blank and sample.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The "J" data may be biased high or low or the direction of the bias may be indeterminable.
- JN The analysis indicated the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected ® on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.
- U The analyte was analyzed for, but due to blank contamination was flagged as non-detect (U). The result is usable as nondetect.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The "UJ" data may be biased low.

Highlighted text denotes concentrations exceeding NYSDEC Restricted-Residential Use SCO